Author: Eda AKGÜL, Funda AKTAŞ, Volkan ESKİZEYBEK

Publishing Date: 2012

ISSN: 1300-5200

E-ISSN: 1304-8708

Volume: 27 Issue: 1

ABSTRACT:

In this study, the poly-o-phenylenediamine (POPD) and POPD/CdO nanocomposites with different mole rates of CdO nanoparticles were synthesized in aqueous diethylene glycol solution via chemical oxidative polymerization. As synthesized polymer and nanocomposites were analyzed by fourier transform infrared spectroscopy, differential scanning calorimetry, UV-Vis spectroscopy and scanning electron microscopy for structural on morphological characterization and electrical conductivity of the samples was measured by four-point AC conductivity method. It is suggested that the POPD/CdO nanocomposites, synthesized in the presence of CdO nanoparticles by chemical polymerization of OPD, are not an ordinary mixture. There are strong interactions between CdO nanoparticles and POPD which affect conjugation and electron density and the corresponding interactions lead to increase electrical conductivity of POPD due to increasing CdO nanoparticle amount. Furthermore, the thermal behavior of POPD/CdO nanocomposites was affected by CdO nanoparticle amount and maximum thermal stability occurred when OPD/CdO rate was equal to 2/1. Scanning electron microscope investigations revealed that spherical shaped CdO nanoparticles were surrounded by POPD homopolymer.

Key Words: Poly-o-phenylenediamine; Cadmium oxide; Chemical polymerization; Nanocomposite.

Full Text